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ABSTRACT 

Bone Density Measurement via Radiographic Calibration 

Amber Jean Bowen 

 

Musculoskeletal injuries are the most common injuries sustained by athletes and 

military recruits and can result in decreased performance and lifelong disability. So 

common and costly are these injuries that the American Academy of Orthopedic 

Surgeons has provided guidelines for future research, including recommendations for the 

development of a large animal model of bone injury (USDA 2001). In human and 

veterinary medicine, digital radiography represents the primary diagnostic tool the 

physician uses to diagnose skeletal injury. Advances in digital radiography have provided 

the veterinarian with opportunities to make both simple and complex radiographic 

assessments.  We investigated a simple quantitative measurement of the solar, concave 

aspect of the distal phalanx in the horse, termed the Palmar-Metric (PM).  The PM was a 

significant predictor of solar cup volume (p < 0.001) and negatively correlated with age 

(r2 = 0.28, p < 0.05) as determined from 544 radiographs of the distal phalanx from the 

left and right front feet.  Therefore, veterinarians should be aware of the age related 

change in the solar, concave aspect of the distal phalanx in the horse.  

We hypothesized that the decrease in the degree of concavity with age may be due 

to demineralization and subsequent loss of bone density along the solar margin of the 

distal phalanx. Therefore, we investigated the quantification of optical bone density (bone 

OD) via complex radiographic calibration.  By developing a brightness/darkness index 

(BDI), the greyscale of radiographs, calibrated with an aluminum marker of varying 

known thickness, can be compared to the average density of a cross-section of bone. At 
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varying radiographic exposure intensity (kV) and exposure time (mAs), Al BDI was a 

significant predictor of bone BDI (r2 = 0.960, p < 0.001) and bone OD (r2 = 0.971, p < 

0.001). This method of calibration can be utilized by the radiologist to accurately assess 

bone OD regardless of technique, and allow direct comparison of radiographs taken 

under different exposure settings. This method successfully quantifies bone OD via 

measurement of BDI from standardized digital radiographs, allowing for the opacity of 

radiographs to be truly comparable when taken under different circumstances. 
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I.  LITERATURE REVIEW 

1.1. Basics of Radiology 

Radiography is a widely used diagnostic technique in veterinary medicine. 

According to the Behr-Lambert law, a radiographic image is produced when energy from 

an X-ray source is transmitted through a patient and detected by a sensor (Figure 1). The 

X-ray source or tube is a diode tube made of Pyrex glass that encloses a vacuum. A 

modern X-ray tube contains a heated filament (cathode) that releases X-rays which are 

accelerated across high voltage produced by electrodes onto a target (anode). X-rays are 

produced as the accelerated electrons interact with the target, emerging in all directions to 

be restricted by collimators. In this manner, an incident X-ray beam is produced (Hendee 

and Ritenour 2002). 

This method of X-ray production has barely changed since Roentgen discovered 

X-rays in 1895; however, the manner in which X-ray radiation is detected has developed 

drastically. Traditional film radiography consists of photosensitive film requiring a time 

consuming developing process. Additionally, screen-film systems are limited to a 

relatively small exposure range and the transfer of information from the X-ray beam to 

the film always results in a loss of information (Garmer et al. 2000). With the advent of 

digital radiology (DR), radiographic imaging has drastically improved in image quality 

(Yaffe and Rowlands 1997), resolution (MacMahon et al. 1986) and acquisition time 

(Dackiewicz et al. 2000). One of the major advantages of DR is that it allows the 

clinician to perform various forms of digital processing, such as optimizing image 

contrast after the image has already been recorded (Sprawls 1987). Diagnostic efficacy 

using DR has been shown to be equivalent if not better than traditional film radiography  
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Figure 1. X-ray transmission from the source is detected by the sensor along the 
horizontal axis (x) is dependent on density, thickness (t) and absorption coefficient of the 
sample. 
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 in evaluation of chest (Garmer et al. 2000, Fink et al. 2002, Hirsch et al. 2001), 

pulmonary (MacMahon et al. 1986) and skeletal (Zahringer et al. 2001, Strotzer et al. 

1995) abnormalities. 

Additionally, DR provides a wide dynamic range while traditional X-ray film is 

somewhat limited due to silver halide crystals. The wide dynamic range found in DR is 

due to the large dynamic range of the digital receptors, meaning that there is a wider 

functional range of receptor exposure. When using X-ray film outside of the limited 

dynamic range the film easily becomes over or under exposed. This is not a problem in 

DR as the image is less likely to be over or under exposed at relatively low or high 

exposures (Figure 2) (Sprawls 1987, Garmer et al.  2000).  

Similar to film radiography, an image is produced in DR when energy is 

transmitted through a patient and detected by a sensor; the measured difference in 

transmission is displayed as a digital image. Each data point acquired is a transmission 

measurement through the patient along a given line between the source and the sensor’s 

detector pixel (Figure 1). The transmitted radiation detected by each pixel is converted to 

an electrical signal and displayed on a computer screen as a greyscale, with brighter 

pixels detecting less transmitted radiation (Curry et al. 1990). 

In the veterinary imaging industry, the most commonly used direct-conversion X-

ray image detector is an active-matrix area (AMA) or large-area flat panel detector. An 

AMA is composed of individual pixels, each containing a sensing element that converts 

the incident X-rays to a digital output signal or electric charge. Sensing elements are 

composed of switches, such as diodes or thin-film transistors (TFTs), and a data line to  
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Figure 2. From Sprawls 1987, film radiography (A) has a limited dynamic range due to 
the silver halide in film that is easily over or under exposed at receptor exposure 
extremes. Digital radiography (B) provides a wide dynamic range due to the response of 
digital receptors to a wider range of exposures. 

B) 

A) 
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the external electronics where the signal is digitized and stored. The most commonly used 

sensing element is composed of an amorphous silicon (a-Si) photodiode layer (Beutel et 

al. 2000). 

The amount of radiation detected by the sensor is equal to the amount of radiation 

transmitted through an object and is known as optical density (OD). X-ray attenuation 

through a material is dependent on density, thickness, and mass attenuation coefficient of 

the material. The value of the mass attenuation coefficient is affected by several different 

mechanisms such as energy of the incident X-rays, the attenuator’s atomic mass number, 

Rayleigh or coherent scattering, Compton or incoherent scattering, photoelectric 

absorption, and electron/positron pair production. The energy of the X-ray beam is 

dependent on exposure intensity (kV) and time (seconds) which normally range from 40-

100 kV and 0.04-0.12 seconds and can be set by the user. Increased exposure results in 

increased radiation detected by the sensor and a darker image. In medical radiography, 

the effects of coherent scatter and pair production are relatively insignificant as the 

average atomic numbers of bone and soft tissue are low (Graham and Cloke 1982, 

Hubbell and Seltzer 2004). When evaluating a radiograph, compact and trabecular bone 

have significantly larger mass attenuation coefficients than soft tissue and water and 

consequently are the main contributors to any change in radiographic opacity. Therefore, 

the amount of radiation transmitted to a detector, or the radiographic opacity, is mainly 

due to bone and, more specifically, bone quality, morphology, size, density and mineral 

content (Hubbell and Seltzer 2004). 
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1.2.  Applications of Radiology 

Radiology is the most commonly used technique to assess bone quality by 

subjective evaluation for bone fractures, pathology, or any change from normality in bone 

size, shape and ossification. Radiology is used for a wide array of diagnoses, including 

detection of osteoporosis (Szulc 2006), cancer (Hirsch et al. 2001) and stress fractures in 

soldiers and athletes (Pentecost et al. 1964, Krause and Thompson 1943). DR represents 

the primary diagnostic tool the physician uses to diagnose skeletal injury. 

In horses, the most common application of DR is in evaluation of the cause of 

lameness, the most important origin of loss of use for the horse (Lindner and Dingerkus 

1993). Musculoskeletal injuries account for the majority of racing and training deaths in 

both Thoroughbreds and Quarter Horses (Johnson 1993, Estberg et al. 1993, 1996, 

Palmar 1986). In performance horses, fractures not due to a specific traumatic event 

occur often, and are considered to be fatigue or stress fractures. Pre-existing stress 

fractures are often seen in severe pelvic, scapular, humeral and tibial fractures (Stover et 

al. 1991, 1993, Johnson 1993, Johnson et al. 1994). Microfractures and stress fractures 

can be caused by normal physiological strain if stress is repetitive or applied in a different 

plane than normal, or by physiological strain beyond the normal limits (Nielsen et al. 

1997). In 1990, Frost theorized that if enough micro-damage occurs cortical bone 

remodeling will be triggered. Despite many studies that have been conducted to 

determine risk factors associated with stress fractures in performance horses, even today, 

there exists relatively little insight into the prevention of these performance related 

injuries. 

According to Wolff’s law, bone is a dynamic tissue that changes depending on the 

stresses placed upon it. Bones of both juvenile and mature horses are adapted by 
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modeling when overloaded (Jones et al. 1977, Goodship et al. 1979, Woo et al. 1981, 

Bloomfield 1995, Lanyon 1984, Meade et al. 1984, Rubin and Lanyon 1984, 1985, Burr 

et al. 1989). Remodeling due to increased strain occurs via increased deposition of bone 

on the periosteal surface (Goodship et al. 1979) and also by decreased resorption of bone 

from the endosteal surface (Jones et al. 1977, Woo et al. 1981). Bones that are under-

loaded are remodeled to decrease the amount of bone present such as occurs in astronauts 

during space flight (Cavolina et al. 1997), cases of disuse (Lanyon 1984, Rubin and 

Lanyon 1984, 1985, Skerry and Lanyon 1995, Thomas et al. 1996) and during 

deconditioning (Porr et al. 1998). 

One of the most commonly radiographed bones in the racehorse is the third 

metacarpal bone. The third metacarpal has a high frequency for fracture and is the site 

where dorsal metacarpal disease, or bucked shins, occurs (Stover et al. 1992). In the 

United States during 1992, 0.32% of Thoroughbred 2 year olds suffered an injury 

(Wilson et al. 1996), five of the injuries were diagnosed as bucked shins and another 7 of 

the total 57 reported were fractures of the third metacarpal. Nunamaker et al. in 1990 

reported that fatigue fracture of the third metacarpal occurs in 70% of Thoroughbred 

racehorses within their first year of racing. Increased bone density associated with 

training has been known to be a factor improving stress-bearing characteristics and 

preventing or delaying structural damage of bone (Raub et al. 1989, Carter 1987). The 

third metacarpal of the horse has been shown to increase in average mass, cortical 

thickness, diameter and structural strength due to increased exercise (Forwood and Parker 

1986, Carter 1982, Jeffcott et al. 1999, Smith et al. 1985, Williams et al. 1984, Welch 

1999). Further, the third metacarpal has been shown to experience changes in bone 

mineral density (BMD) related to exercise in juvenile racehorses (McCarthy and Jeffcott 
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1992, Nielsen et al. 1997, Porr et al. 1998, 2000). Change in the size and shape of the 

bone as well as increasing the BMD should result in decreased strain placed upon that 

bone by stress (Carter 1984). The third metacarpal bone reaches skeletal maturity at a 

relatively young age, is easily accessible via radiography, has very little associated soft 

tissue and is frequently injured, making it an obvious choice for elucidation of variables 

associated with calibration of bone density and OD. 
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1.3. Determination of Bone Characteristics 

The structural unit of compact bone is called the osteon or Haversian system. 

Each osteon is an elongated cylinder oriented along the long axis of the bone which 

group together to form lamella. Collagen fibers in a lamella are able to withstand 

mechanical stress and attribute to bone strength. Collagen and other organic material 

makes up 1/3 of the matrix, and contribute to the structure, flexibility and tensile strength 

of bone. The inorganic components consist of hydroxyapatites the majority which is 

calcium phosphate. Hydroxyapatites account for bone hardness and are the major 

contributors to bone density (Ensminger 1994). 

A typical long bone consists of a cortex or a dense outer layer and an inner 

medulla. A long bone has a shaft or a diaphysis in the middle region and each end is 

expanded into a region termed the epiphysis. The diaphysis consists of cortical or 

compact bone containing the Haversian system and a hollow middle called the medullary 

cavity which is filled with marrow. The epiphyses are composed largely of trabecular or 

spongy bone. At the diaphysis, there is cortical bone surrounding bone marrow, and very 

little associated soft tissue (Figure 3). 

Characteristics of bone such as mass, density, size, and molecular makeup can 

easily be measured through basic laboratory techniques. Clinically, it is not practical to 

biopsy bone to evaluate simple morphology, as it is a painful procedure with associated 

risks. Further, it does not give insight into the entire structure of the bone. Therefore, 

several techniques have been investigated to evaluate bone morphology in vivo. These 

include DR, allowing a clinician can evaluate bone size and shape and identify areas of 

decreased or increased opacification.  
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Figure 3. A longitudinal cross-section of a typical long bone, containing a middle shaft or 
diaphysis and expanded ends or epiphyses. At the diaphysis, there is cortical or compact 
bone surrounding bone marrow. From Arthur’s Medical Clipart 2009. 
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More advanced techniques including quantitative ultrasound, computed tomography and 

MRI aid in assessing bone modalities such as stiffness (Moris et al. 1995), 3D bone 

structure and micro-architecture (Feldkamp et al. 1989), change in bone geometry due to 

exercise (Daly et al. 2004), and BMD (Chappard et al. 1997). However, these methods 

are limiting as the clinician can only make a subjective appraisal of bone quality and 

comparison of images is difficult when taken with different techniques such as exposure 

setting, focal distance and equipment, or taken overtime. 

True bone density can be measured by determination of bone weight and volume. 

Compact bone has a measured density of 1.85 g/cm3, accurate to the µg/cm3. Trabecular 

bone density ranges from 0.2 to 0.6 g/cm3 while soft tissue has the same density as water 

at 1.00 g/cm3 (Berger et al. 2000). However, it is unpractical to use this method to 

measure bone density in vivo and alternate techniques have been developed that are good 

indicators of bone density. Ex vivo, studies report an increase in bone ash weight (g/cc) or 

percent bone mineralization during periods of bone growth (Hammett 1925), and  

decrease with increased age (Leichter et al. 1981, Riggs et al. 1981). Weaver and 

Chalmers 1966 and Bell et al. 1967 demonstrated a significant correlation between 

compressive strength and ash weight. However, the use of ash weight as a significant 

predictor for bone density and strength may be affected by the method of bone 

preservation, drying, and testing techniques (Sedlin 1965, Sedlin and Hirsch 1966, 

Walmsley 1953).  

Methods for measurement of BMD in vivo would eliminate these sampling 

effects, and today BMD is most commonly measured using DEXA (Chappard et al. 1997, 

Larcos and Wahner 1991). With DEXA, BMD is quantified in units of g/cm2, and many 
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studies acknowledge the confounding effect of bone size on BMD measurements (Raub 

et al. 1989). In humans, DEXA is the medical standard for evaluation of osteoporosis. 

BMD results are considered normal or abnormal after comparison to a national average, 

and error occurs with use of different DEXA machinery and radiographic technique 

(Bonnick 2010, Hui et al. 1997, Krølner and Pors Neilsen 1982). Although DEXA is the 

standard assessment in humans, it is expensive and not mobile, and therefore is not used 

at near the frequency as DR to assess bone quality in animals. 
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1.4.  Calibration of Digital Radiographs 

To make accurate dimensional and complex measurements, the method of 

medical imaging needs to be calibrated. With the frequency and ease of use with DR, 

radiography is an ideal method for digital imaging standardization. For the veterinarian, 

DR offers a compact, portable method to evaluate bone quality. As bone characteristics 

and opacification is often subjectively compared to assess bone structure abnormalities 

and pathology, quantitative assessment of various aspects of bone morphology via 

radiography would be extremely valuable. 

Many methods have successfully generated basic dimensional measurements from 

a radiograph by scaling the image to an object of known size, allowing for reproducible 

radiographic measurements equivalent to actual size (Kummer et al. 2004, Rocha et al. 

2004, White et al. 2008). This is accomplished by insertion of a marker of known 

dimensions into the radiograph in plane with the patient, affording quantitative analysis 

of many variables such as bone displacement, vascular canal diameter, and bone 

thickness (Linford et al. 1993, Craig et al. 2001, Rocha et al. 2004, Raub et al. 1989). 

Standardized radiographic measurements have been shown to aid in morphometric 

analyses of the distal limb of the horse, including changes in bone size due to injury and 

remodeling (Raub et al. 1989), third phalanx positioning due to laminitis (Parks and 

O’Grady 2003) and hoof trimming (Kummer et al. 2006). 

More complex calibration of digital radiographs has allowed for quantitative 

measurement of radiographic opacity or OD. In all photo-film techniques, OD is defined 

as the percentage of light transmitted through a given thickness and density of material 

dependent on the mass absorption coefficient of the material (Meakim et al. 1981). In 
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radiography, an aluminum (Al) wedge of increasing thickness and uniform density is 

commonly included in a radiographic study as a comparison for OD, affording 

determination of bone OD in terms of mm Al or radiographic bone Al equivalents 

(Meakim et al. 1981, Inoue et al. 2006, Kolbeck et al. 1999).  This method is most readily 

applied in a research setting as each radiograph must be taken with exactly the same 

technique (exposure setting and focal distance). Additionally, OD is measured at regions 

of interest as determined by the researcher. With this system OD cannot quantitatively be 

compared between studies due to varying radiographic techniques. 

Bone OD has been shown to be a reliable assessment of BMD when verified 

using DEXA, and is successful in detecting bone strength (Nielsen et al. 2007) and 

osteoporotic changes due to rheumatoid arthritis and osteoporosis in humans (Nagamine 

et al. 2000, Glüer et al. 1994), regenerative bone growth in the pig tibia (Kolbeck et al. 

1999), and exercise-induced bone remodeling in the third metacarpal of young horses 

(Raub et al. 1989, Riggs and Boyde 1999, Jeffcott et al. 1988). BMD has been correlated 

with breaking load, revealing that mineral content may be an indicator of breaking 

strength (Nunamaker et al. 1990, Järvinen et al. 1998, Bell et al. 1967). Mineral content 

has also been shown to highly correlate with the elastic modulus and ultimate breaking 

strength in a given area of bone (Schryver 1978). However, no methods have reported 

quantitative assessment of bone OD, standardized for use with different digital radiology 

systems and exposure settings (Nagamine et al. 2000). 
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1.5. Justification for Work 

Despite the many studies that have been conducted to determine risk factors 

associated with stress fractures in athletes and soldiers, there exists relatively little insight 

into the prevention of these performance related injuries (Myburgh et al. 1990, Giladi et 

al. 1985).  Musculoskeletal injuries occur in 50% of soldiers in Iraq and Afghanistan and 

the military spends over 1.5 billion dollars annually treating and managing these injuries 

(USDA 2001). So common and costly are these injuries that the American Academy of 

Orthopedic Surgeons has provided guidelines for future research. Fundamental aspects of 

these recommendations include the development of a large animal model of bone injury 

(Pollak and Calhoun 2006). Using common digital radiography, quantitative 

measurements of bone quality would be valuable in a wide range of applications in the 

medical, military and veterinary fields by evaluation of bone integrity, fracture risk and 

results of performance training (Heggie et al. 2001). DR is commonly used to detect 

fractures in large animals and the third metacarpal bone of the horse represents an ideal 

model of bone fracture due to the high frequency of performance related injury. This will 

allow assessment of variables that indicate stress fracture risk in vivo, utilizing currently 

existing and practical technology. 

Microfractures are known to weaken the bone, eventually leading to catastrophic 

failure (Schaffler et al. 1989). However, if damage can be diagnosed and allowed to 

repair, catastrophic failure may be delayed or prevented (Martin and Burr 1982). Among 

the identified risk factors of stress fracture development, decreased BMD has been 

correlated with stress fractures in military and civilian studies, especially in women 

(Lauder et al. 2000, Giladi et al. 1985, Cranney et al. 2007, Beck et al. 2001). DEXA is 
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the standard technology used to diagnose osteoporosis in humans by determination of 

BMD at specific sites such as the second metacarpal bone, lateral spine or the femoral 

neck (Szulc 2006). BMD is considered low in each of these sites when compared to a 

national average, however, as DEXA is not standardized, BMD is dependent on the site 

scanned and not completely comparable between DEXA machines (Tabensky et al. 

1996). Further, comparison of BMD scans to population average BMD for specific sites 

is not available or practical to the veterinary clinician. Unlike DEXA, DR has the 

advantage for veterinary clinicians of being extremely portable, relatively inexpensive, 

and practical in a field setting. Despite the many methods used today to evaluate bone 

morphology, none are used at near the frequency as DR in qualifying fractures. DR 

provides the clinician with portable rapid image acquisition, diagnosis, and images that 

can easily be stored or transferred for off-site review.  However, due to the lack of 

standardization of digital radiographic images, an image cannot entirely be compared to 

another taken under different conditions such as exposure settings, positioning, and 

equipment. Development of a quantitative measurement for radiographic bone density 

using standard radiographs will be valuable to the veterinarian in assessing bone 

integrity, fracture risk and results of performance training (Heggie et al. 2001). 

Many methods have successfully generated basic dimensional measurements from 

a radiograph by scaling the image to an object of known size in the radiograph, allowing 

for reproducible radiographic measurements equivalent to actual size (Kummer et al. 

2004, Rocha et al. 2004, White et al. 2008). While simple measurements of dimension 

have been standardized, more complex variables such as bone density have not. Few 

research studies have reported quantitative assessment of bone OD by inclusion of an Al 
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wedge standard, but none are practical in a non-research, clinical setting. Some authors 

have attempted to eliminate the confounding factor of bone size by measurement of limb 

circumference (Raub et al. 1989), however, there are no methods available that allow 

calibration for quantification of OD with different DR systems and exposure settings 

(Nagamine et al. 2000). 

Therefore, we will develop a method to calibrate radiographs such that bone OD 

determined from radiographs taken under different circumstances can be directly 

compared among veterinary, medical, and military institutions.  This will allow the 

clinician to compare radiographs from different patients or overtime, regardless of 

radiographic technique and X-ray machine. The information gained with this 

investigation will allow more accurate radiographic assessment of performance related 

injuries, including the ability to accurately interpret radiographs by a specialist thousands 

of miles away. We believe this will allow a more accurate prediction of bone density and 

hence, likelihood for stress fracture development. 
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II. INTRODUCTION 

In the first study, a novel morphometric measurement was generated to evaluate 

the volume of the solar aspect of the distal phalanx in the horse via radiography. Recent 

advances in standardized digital radiology and software development have supported 

accurate, quantitative, measurements of the equine digit. Furthermore, these 

measurements may improve treatment of distal limb lameness by providing the 

veterinarian with quantitative radiographic assessments of the equine digit (Rocha et al. 

2004, Kummer et al. 2004, Hunt 2002, Parks and O’Grady 2003).  Our objectives were to 

describe a novel measurement of the solar, concave aspect of the distal phalanx, termed 

the Palmar-Metric (PM), via simple radiographic calibration and demonstrate the manner 

in which the PM changes with age. 

The second study contained three parts. In the first part, a quantitative 

measurement for radiographic bone density was developed that accurately evaluates the 

radiographic opacity of bone, termed the brightness/darkness index (BDI), under different 

exposure conditions. This method will be valuable to the veterinarian in assessing bone 

integrity, fracture risk and results of performance training when using a common digital 

radiography system (Heggie et al. 2001). By creating a standardized curve for the BDI of 

the bone as determined from the BDI along an Al wedge standard, and characterizing 

BDI as a smooth, continuous function dependent on intensity and exposure time, we can 

account for changes in radiographic density due to changes in exposure, affording 

brightness calibration of any radiograph.   

In the second part, we described new analysis methods to reduce the confounding 

effect of bone mass attenuation by quantification of bone OD (g/cm2). In the third part, 
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error in bone OD due to effects of soft tissue, bone marrow, radiographic positioning and 

user error was assessed. Bone OD is a better assessment of bone density than BDI, as the 

bone/Al mass attenuation coefficient ratio has been shown to change with radiographic 

exposure (Berger et al. 2000). We hypothesize that bone OD can be determined from a 

digital radiograph with inclusion of an Al wedge of known thickness and density and 

known bone/Al mass attenuation coefficient ratio (Curry et al. 1990, Carter et al. 1992). 
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III.  SIMPLE RADIOGRAPHIC CALIBRATION 
 
 

3.1. Materials and Methods 

This is one of two studies presented examining standardized digital radiographic 

measurements of the distal limb of the horse. This study concentrated on a novel 

radiographic volumetric measurement of the concave, solar aspect of the distal phalanx, 

termed the PM, and examined how the PM correlated with age in the horse. 

 

3.2. PM Quantification 

 A method to determine the PM from any standard lateral medial (LM) radiograph 

was developed to evaluate the solar concavity of the distal phalanx. From a digital 

radiograph, a line we term the palmar curve was traced from the tip of the distal phalanx 

along the most palmar aspect of the radio-dense line to the proximal palmar aspect of the 

articular margin of the distal phalanx (Figure 4A,B).  The PM was calculated by creating 

a coordinate system within the radiograph based on the palmar curve and position of the 

distal phalanx (Figure 4C). A reference rectangle was then constructed and the area 

within the rectangle defined above and below the palmar curve. The PM was expressed 

as a percentage of the area under the palmar curve relative to the area of the reference 

rectangle (Figure 4D).   

 

3.3. Calibration of the PM 

To confirm the predictability of solar cup volume from the PM, 65 distal phalanx 

cadaver bones from horses of varying age and breed were radiographed. Each cadaver 

bone was placed on a standardized hoof block (EponaTech), containing Al  
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Figure 4.  Determination of the PM. (A) The radio-dense line along the midline of the 
distal phalanx on LM radiograph indicated by red arrows. (B) The palmar curve traced 
with Metron on LM radiograph. (C) A coordinate system set at the tip of the distal 
phalanx using a line along the palmar angle and a vertical line through the extensor 
process. (D) The PM determined from the percent area of the reference rectangle under 
the palmar curve. 
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markers of known length to scale the image.  High quality digital LM radiographs were 

taken of the 65 cadaver bones and hoof block (Figure 5). The PM was determined using 

the method described above (Figure 6). Radiographs were taken at 65 kV, 0.06 seconds 

and 15 mA with a focal distance of 26 inches. 

For each bone, physical volume of the solar concavity was measured using 

modeling putty by filling the solar aspect of the distal phalanx. The distal phalanx with 

putty was pressed onto a hoof block and excess putty was removed. The putty was cut 

lateral to medial at the position of the orthogonal projection of the extensor process when 

viewed from above (Figure 7A). The putty dorsal to this cut was removed and discarded. 

The remaining putty was removed and its volume was measured via water displacement 

(Figure 7B,C). 

Additionally, third phalanx lateral toe length and lateral height were determined 

from digital radiographs of the 65 cadaver bones (Figure 8). Lateral height was 

determined as the length perpendicular to the most palmar aspect of the solar surface and 

intersecting the most proximal point of the extensor process. Toe length was measured 

from the palmar tip of lateral height to the tip of the third phalanx. Lateral toe length and 

height were evaluated to determine if they were significant predictors for solar cup 

volume. 

Radiographs were taken with a portable X-ray system (Min X-ray HF80) and 

digital X-ray plate (Thales FS23, Vetel Diagnostics). Digital images were imported into 

the software program Metron-DVM (EponaTech). 
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Figure 5. High quality digital lateral medial radiograph of a third phalanx cadaver bone 
on a standardized hoof block of known dimensions.  
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Figure 6. Measurement of the PM represented as the percent area (green) under the 
palmar curve (red) as compared to the reference rectangle (blue), determined from a 
lateral medial radiograph of a third phalanx cadaver bone. 
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Figure 7.  The solar cup volume of the distal phalanx was measured using modeling 
putty. The putty was cut lateral to medial at the position of the orthogonal projection of 
the extensor process when viewed from proximal to distal (A). The putty dorsal to this 
cut was removed and discarded. The remaining putty was removed (B) and its volume 
(cc) was measured via water displacement (C). 
 
 
 

A 

B 

C  
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Figure 8. Measurements made from a lateral medial radiograph of a third phalanx cadaver 
bone. Lateral height (yellow) was determined as the length perpendicular to the solar 
surface (blue) and intersecting the most proximal point of the extensor process. Toe 
length (red) was measured from the perpendicular intersection of lateral height and solar 
surface to the tip of the third phalanx.  
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3.4. PM and Age 

Subsequently, three independent users determined the PM from 544 high quality 

LM digital radiographs of the front feet of horses (Figure 9). Radiographs were taken 

with the inclusion of a standardized hoof block, and were obtained from various 

veterinary clinics and farms for horses of known age and breed. Of the 544 radiographs, 

438 (219 pairs) were right and left front feet pairs, resulting in a total of 325 horses 

radiographed. The average age of the 325 horses was 8.8 ± 5.1 years.  

 Radiographs were taken with various digital systems, at unknown exposure and 

focal distance, depending on the veterinarian’s discretion. Digital images were imported 

into the software program Metron-DVM (EponaTech). 

 

3.5. PM Precision  

Changes in PM with radiographic positioning along three directional axes and 

with rotation around each axis were assessed. The PM was determined from a third 

phalanx cadaver bone that was displaced from normal up to 9 cm in all directions along a 

3D coordinate system. Additionally, the cadaver bone was rotated from normal along all 

three directions of rotation, up to 12 degrees from normal (Figure 10). Level of precision 

errors (SD) and coefficient of variation (CV) was assessed by measuring the PM by four 

different users, as described by Glüer et al. (1995).  Each user independently determined 

the PM for 50 different standard LM distal limb radiographs, duplicating the 

measurement after a two week time interval. For comparison, one user was considered an 

expert. 
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Figure 9. Standard high quality lateral medial radiograph of the distal limb of the horse 
on a standardized hoof block containing Al markers of known dimensions.  
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Figure 10. Coordinates for radiographic rotational and positional errors, with angle φ 
representing a rotation about the x-axis, angle δ representing a rotation about the y-axis, 
and angle θ representing a rotation about the z-axis. The digital sensor plate was 
positioned in the y,z-plane.  
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3.6. Statistical Analysis 

Linear regression was used to assess the relationship between PM and solar cup 

volume for the 65 cadaver bones. Of the 544 LM radiographs, 219 left and right pairs 

were analyzed for differences between left and right PM versus age by comparing slopes 

using a two sample paired t-test.  Linear correlation was used to assess the relationship of 

age, lateral height, toe length and radiographic positioning on PM. All statistical tests 

were performed using Minitab and were based on a 2-sided null hypothesis of no 

difference and a level of significance set at 0.05.   

 

3.7. Results 

Calibration of the PM was performed via determination of solar cup volume and 

PM for 65 distal phalanx cadaver bones. Solar cup volume is shown to be a statistically 

significant predictor of the PM (t(63) = 26.64, p < 0.001, Figure 11). Furthermore, 91.9 

% of the variability in the PM is explained by the regression relationship between PM 

and solar cup volume (r2 = 0.9185). PM increases as lateral height increases (r2 = 0.668, 

t(63) = 11.07, p < 0.001) and toe length increases (r2 = 0.684, t(63) = 11.483, p < 0.001). 

Both lateral height and toe length are significant predictors of PM, however, less 

variability is explained with height or toe length (Figure 12). 

From 544 distal limb radiographs, the PM was determined for each age group 

dependent on left or right front foot (Table 1). Mean PM ± SD and mean age ± SD from 

all radiographs in the study was 7.55 ± 2.70 % and 8.83 ± 5.13 years. The slopes of the  
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Figure 11. Experimentally measured solar cup volume versus PM, determined from 
standard lateral medial radiographs of 65 distal phalanx cadaver bones (t(63) = 24.32, p < 
0.001, r2 = 0.918). 
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Figure 12. PM versus third phalanx lateral height (top) and toe length (bottom), 
determined from lateral medial radiographs of 65 third phalanx cadaver bones (p < 0.001) 
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Age (years) 

 
Mean Palmar-Metric ± SD (%) 

N 
Left (N=219) Right (N=219) Averaged (N=438) 

1 3 8.18±0.78 9.53±0.59 8.76±1.44 
2 12 8.94±0.67 9.41±0.54 9.15±2.56 
3 21 9.74±0.51 10.12±0.40 9.94±2.33 
4 14 8.71±0.53 8.85±0.59 8.77±2.40 
5 18 9.35±0.62 8.85±0.45 9.10±2.41 
6 14 8.50±0.46 9.29±0.51 8.86±2.10 
7 17 7.49±0.50 7.33±0.43 7.42±2.21 
8 13 6.15±0.66 6.55±0.51 6.36±2.37 
9 12 7.25±0.34 8.22±0.38 7.78±1.47 
10 14 6.76±0.51 6.96±0.48 6.85±2.09 
11 13 6.75±0.63 7.29±0.59 7.04±2.50 
12 12 6.70±0.68 6.77±0.57 6.74±2.45 
13 8 6.60±0.64 6.54±0.65 6.57±2.07 
14 11 6.57±0.66 6.48±0.65 6.53±2.13 
15 5 4.73±0.70 5.18±0.16 4.93±1.26 
16 13 5.00±0.66 5.60±0.87 5.30±2.75 
17 7 7.28±0.49 6.99±0.68 7.14±1.64 
18 4 4.41±0.96 3.06±0.60 3.81±1.82 
20 3 4.04±0.66 3.95±1.22 4.01±1.59 
21 2 3.99±0.70 4.73±1.80 4.24±1.62 
22 1 3.22 3.70 3.46±0.34 
23 1 4.21 4.58 4.39±0.26 
26 1 3.68 5.15 4.42±1.04 

 
 
Table 1. Mean PM and standard deviation (SD) by age for the left and right front feet and 
the left and right front feet average for 219 horses of various breed. There were no 
significant difference in PM between left and right front feet (p > 0.05) as determined 
with a two sample t-test. 
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regression lines for PM and age for left (-0.27 ± 0.03 % per year) and right (-0.29 ± 0.03 

% per year) front feet were not significantly different from each other (t(217) = -0.676, p 

= 0.75, Figure 13). The PM for left and right front feet was averaged to obtain one PM 

value for each horse. There was strong evidence that the age of the horse was a 

significant predictor for PM, and decreased at a rate of 0.28 ± 0.02 % per year (r2 = 0.33, 

t(217) = -10.4, p < 0.001, Figure 14). 

Error in PM due to radiographic positioning was assessed in three linear and three 

rotational directions. There was no statistical radiographic positioning error in PM 

associated with the three linear directions and the three directions of rotation up to an 11 

degree rotation from normal (p > 0.05, Table 2). Determination of the PM varied by user 

and ranged from CV 0.67 – 23.2 % and SD 0.05 – 1.35 (Table 3). For all users, SD was 

determined to be 1.13 and CV was 12.14 %. 
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Figure 13. PM versus age 
t(217) = -9.85, p < 0.001) front 
regression lines do not differ 

0

2

4

6

8

10

12

14

16

0 5

P
M

 (
%

)

0

2

4

6

8

10

12

14

16

18

0 5

P
M

 (
%

)
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Figure 14. Average PM (top) and PM (bottom) versus age for 219 horses of various 
breeds. PM decreased at a rate of 0.294 % per year (t(217) = -10.4, p < 0.001). 
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Direction df PM ± SD p 

x 12 11.24 ± 0.27 0.301 
y 12 11.13 ± 0.27 0.901 
z 27 10.70 ± 0.89 0.100 
φ 18 10.82 ± 0.39 0.891 
δ 30 10.60 ± 0.05 0.095 
ρ 21 11.07 ± 0.36 0.203 

 
Table 2. PM and standard deviation (SD) dependent on radiographic positioning in three 
linear directions (x, y, and z) and three directions of rotation (φ, δ, and ρ). Significant P 
values indicate that the mean PM is different from the PM measured at zero displacement 
from normal.  
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User df SD CV (%) 

1 50 1.23 22.62 
2 50 0.79 11.07 
3 50 1.35 23.20 
4 50 0.05 0.67 
All 350 1.13 21.97 

 
Table 3. PM levels of precision errors (SD) and coefficients of variation (CV) determined 
for two repeat observations of 50 lateral medial radiographs of the distal phalanx. User 4 
is considered an expert. 
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IV.  Complex Radiographic Calibration 
 
 
4.1. Materials and Methods 

This is the second study examining standardized radiographic measurements in 

the distal limb of the horse. This study contained three parts: the first part concentrated on 

calibration of BDI in the third metacarpal of the horse over different exposure ranges, the 

second part concentrated on measurement of bone OD via digital radiographs, and the 

third part concentrated on error associated with the measurement of bone OD due to 

effects of soft tissue, radiographic positioning and user error. 

 

4.2. Determining BDI 

BDI was evaluated in the same manner in all instances. First, digital radiographs 

were imported into the software program Metron-DVM (EponaTech). To determine BDI 

a unit-less value was assigned to each 16 bit pixel on a greyscale from 0 to 65,535, with 

zero being completely black and 65,000 being completely white. A predetermined area or 

region of interest was generated by forming a rectangle using the software program 

Metron-DVM. The BDI for the area is determined by averaging the greyscale value of 

each pixel in the area, using Excel (Microsoft). In determining BDI pixels with BDI equal 

to the BDI of the background were not included. 

 

4.3.  Radiographic Method 

Each radiograph contained an Auto-Scaler (EponaTech) and Al wedge. The Al 

wedge was machined from type 6061 Al and was 20.20 cm in length, 2.54 cm in width 

and increased linearly from 0.20 to 31.80 mm in thickness, with a constant density of 
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2.70 g/cm3. The Auto-Scaler contained metal markers that standardized the dimensions of 

the radiograph when imported into Metron. All radiographs were taken with a portable X-

ray system (Min X-ray HF80 or HF100+) and X-ray sensor (Canon CXDI 60G, Vetel 

Diagnostics).  

 

4.4. BDI at Varying Radiographic Exposures 

As the BDI of a region of interest decreases with increasing X-ray exposure, the 

nature of this effect on both cortical bone and an Al standard needed to be evaluated to 

correctly assess cortical bone BDI at varying radiographic exposure settings. A third 

metacarpal equine cadaver bone was placed on a wooden block with Al wedge and Auto-

Scaler. The cadaver bone was positioned perpendicular to the ground in the center of the 

line of exposure with the Al wedge and Auto-Scaler positioned on either side. The bone 

was placed to produce a standard dorsal palmar (DP) radiograph (Figure 15). The focal 

distance was 26 inches, with the plane of interest containing the cadaver bone, Al wedge, 

and Auto-Scaler positioned against the face of the sensor. Radiographs were taken at all 

available combinations of pre-set exposure intensities ranging from 55 to 80 kV with 5 

kV intervals, and exposure times from 0.02 to 0.14 seconds every 0.02 seconds. All 

radiographs were taken at 15 mA, the only setting available for the X-ray source. 

The BDI of the Al wedge and of the cadaver bone was measured on each 

radiograph. The Al BDI was measured by creating a rectangle encompassing the entire 

wedge. The bone BDI was determined from a region of interest with a width larger than 

the cross-sectional width of the bone perpendicular to the sagittal plane, and a height 
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Figure 15.  Dorsal palmar positioning of a third metacarpal equine cadaver bone on a 
wooden block with Auto-Scaler (left) of known dimensions and Al wedge (right) of 
known thickness and density. The nutrient foramen (red arrow) can be seen as a dark spot 
on the diaphysis.  

Nutrient Foramen 
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equal to the diameter of the nutrient foramen (NF) (Figure 16). The NF was used as a 

marker so that the measurement of bone BDI was always for the same region of interest 

to ensure that changes in BDI were solely due to effects of radiographic exposure. Al 

BDI and bone BDI were evaluated for dependency on exposure intensity and exposure 

time. Al BDI was compared to bone BDI for each combination of X-ray intensities and 

exposure times to ensure Al BDI correlated linearly with that of bone. We expect a 

smooth linear correlation of bone BDI to Al BDI over a range of exposures to ensure that 

X-rays interact the same with Al and bone, and that the interaction was some function of 

exposure that was easily standardized. This allowed for BDI calibration of radiographs 

taken at varying exposure intensity and exposure time using an Al wedge standard. 

 

4.5.  Calibration of BDI 

 For subsequent radiographs, the Al wedge was used to standardize the BDI of a 

given image in units of mm Al. Each radiograph was standardized by creating a standard 

curve unique to that image. The standard curve was obtained by measuring average BDI 

horizontally across the Al wedge (or for one thickness of Al) and plotting the BDI versus 

the length along the midline of the wedge (Figure 17). As the thickness of Al increased 

linearly from 0 to 31.80 mm, we expected Al BDI to increase in a determinable manner. 

From this relationship, thickness of Al could be determined from a measured BDI value. 

To test if this was accurate for any exposure, radiographs were obtained of the Al wedge 

and an Al step-wedge. The Al step-wedge was made from 6061 Al alloy, was a constant 

2.70 g/cm3, and contained 16 steps of known increasing thickness (Figure 18).  
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Figure 16.  Selection of regions of interest (red) for measuring bone BDI at the nutrient 
foramen and Al BDI from an Al wedge, determined from a dorsal palmar radiograph of a 
third metacarpal cadaver bone. 
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Figure 17. Standard curve of BDI versus thickness of Al (mm Al) for a radiograph of an 
Al wedge taken at 60 kV, 0.06 seconds and 15 mA.  
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Figure 18. Radiograph of Al wedge (left) and Al step-wedge (right), taken at 60 kV, 0.06 
seconds and 15 mA. Radiographic opacity visibly correlates with the thickness of Al, 
with darker areas being thinner than brighter areas. 
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Radiographs were taken in combinations from 40 to 90 kV and 0.04 to 0.08 seconds at a 

focal distance of 26 inches. Radiographs were standardized using the Al wedge standard 

curve. The thickness of each step of the Al step-wedge was measured with 6 inch digital 

calipers (Fisher Scientific) with 0.01 mm accuracy. Additionally, step thickness was 

measured from a standardized radiograph in terms of mm Al. A marker was placed at the 

end of the Al wedge to ensure the full length was used to create an accurate standard 

curve. The step thickness was measured using a region of interest that was centered 

horizontally on the step and 9 pixels wide (Figure 19). The region of interest excluded the 

edges of the step where BDI was most likely to fluctuate due to edge affects. 

 

4.6.  Quantification of Optical Density 

Measurement of BDI or mm Al is generally only used for research as its value is 

dependent on the grayscale chosen by the individual and the attenuation properties of the 

material being measured. OD is preferred to BDI as an indicator of bone mineral density 

as confirmed by DEXA, and is commonly used in human medicine (Nagamine et al. 

2000). In determining OD, the Beer-Lambert law applies to all photo-film techniques: 

� � ������ ,   (1) 

Where  � � transmitted beam intensity, �� � incident beam intensity,  

� � linear attenuation coef�icient, and � � thickness of the material (Curry et al. 

1990). 

The equation can be rewritten as: 

� � ������� �⁄ � ����� �� , 

where �! �
�

�
� mass attenuation coef�icient. The value of the mass attenuation  
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Figure 19. Region of interest selection for Al wedge (red box), and 16 regions of interest 
(yellow lines) corresponding with each step of the Al step-wedge, determined from a 
radiograph taken at 60 kV, 0.06 seconds and 15 mA. 
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coefficient is dependent upon attenuation of an X-ray through matter, and is affected by 

several different mechanisms such as energy of the incident X-rays, the attenuator’s 

atomic mass number, Rayleigh or coherent scattering, Compton or incoherent scattering, 

photoelectric absorption, and electron/positron pair production. The value of the mass 

attenuation coefficient is independent of the density of the attenuator (Curry et al. 1990). 

In medically relevant exposure ranges of 50 to 90 kV, the effects of coherent scatter and 

pair production are relatively insignificant as the average atomic numbers of cortical bone 

(13.7) and Al (13) are low (Graham and Cloke 1982, Hubbell and Seltzer 2004). 

Although the mass attenuation coefficients vary significantly over this range, the mass 

attenuation coefficient ratio is relatively constant at 0.886 ± 0.026 (Figure 20) (Hubbell 

and Seltzer 2004). 

Radiographic density or OD, commonly referred to as luminosity or opacity of the 

bone sampled, is defined as: 

"# � $%&
'

'(
� )�!*�                (2)  

And OD of Al, for example, would be: 

"#+, � )-�!*�.+,  

Comparing optical densities of Al and bone, we set "#+, equal to "#/: 

-�!*�.+, � -�!*�./ 
 

*/ � -�!+, �!/⁄ . · -�+, �/⁄ . · *+,            (3) 

The relationship shown in Equation (2) can be experimentally utilized to 

determine true bone density from a radiographic image (Curry et al. 1990). However, 

cortical bone thickness is generally unknown in situ and difficult to quantify and 

commonly density and thickness of the bone are quantified together and known as areal  
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Figure 20. Mass attenuation coefficients for cortical bone (blue) and Al (red). The mass 
attenuation coefficient ratio (green) is relatively constant at 0.886 ± 0.026 (Hubbell and 
Seltzer 2004).  
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bone density, which is proportional to OD. For example, two materials such as bone and 

Al of known density and thickness are radiographed. The point at which the radiograph 

exhibits equal BDI for both materials, the mass attenuation ratio for the materials can be 

calculated using Equation 3 (Carricart-Ganivet and Barnes 2007, Chalker et al. 1985). By 

determining the mass attenuation coefficient ratio for cortical bone and Al using an Al 

wedge of known areal density, bone density can be quantified from a standardized digital 

radiograph.  

In determining the mass attenuation coefficient ratio, a cortical bone step-wedge 

was created of known density and increasing thickness. Cortical bone was obtained from 

a third metacarpal equine cadaver bone in the mid-diaphysis region. The cortical bone 

was cut into slices using a diamond blade tile saw. The average dimension of each slice 

was 15.28 ± 3.3 mm square and 4.23 ± 1.0 mm thick. A bone step-wedge was created by 

stacking each bone slice in increasing thickness from the one slice up to 6 slices thick, 

consecutively from Row 1 to Row 10. Scotch tape was used on the sides of the bone 

slices to hold them in place, forming a total of ten steps of increasing thickness. The 

thickness and volume corresponding with each bone step was determined using 6 inch 

digital calipers (Fisher Scientific) with 0.01 mm accuracy. Weight was measured using a 

digital balance (Accu-224, Fisher Scientific) with 0.1 mg accuracy. The density for each 

bone step was determined by dividing weight by volume for each step. Slices were stored 

at 5 °C and kept hydrated in a saline solution. 

Standard digital radiographs were taken of the bone wedge and Al wedge (Figure 

21). The bone step-wedge was positioned to intersect the center of the line of exposure,  
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Figure 21: Bone wedge (center) made of 10 cortical bone steps of decreasing thickness 
(left to right) on a standardized hoof block and Al wedge (right), from a digital 
radiograph taken at 60 kV, 0.08 seconds and 15 mA. 
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with the Al wedge on one side. BDI was determined for each step of bone and for the 

standard curve obtained from the Al wedge (Figure 22). Standardized curves were 

created for bone BDI versus bone areal density, and Al BDI versus Al areal density. 

Where Al BDI was equal to bone BDI, the correlation between bone and Al areal density 

could be determined, and therefore the mass attenuation coefficient ratio. Radiographs 

were taken with a focal distance of 26 inches, with the plane of interest containing the 

bone wedge and the Al wedge positioned against the face of the sensor. Radiographs 

were taken at 60 kV, 15 mA and 0.08 seconds. 

To test if bone OD was an accurate predictor of bone areal density for any 

exposure, further evaluation of the bone step-wedge was performed while varying kV. 

Radiographs were obtained of the bone step-wedge and Al wedge using methods 

described in the previous experiment. Radiographs were taken from 40 to 90 kV, 0.06 

seconds and 15 mA at a focal distance of 26 inches. Bone OD was measured and 

compared to the areal density for each cortical bone step. 

 

4.7. Error Associated with Optical Bone Density 

 To assess the effect of soft tissue and marrow on the quantification of bone OD, 

standard DP and LM radiographs were taken of a distal cadaver limb with soft tissue and 

marrow, and without soft tissue, and without soft tissue and bone marrow present. Ends 

of the cadaver limb containing the third metacarpal epiphyses were cut off using a band 

saw to make soft tissue easier to remove. Soft tissue including skin, muscle, tendons and 

adipose tissue was removed using a scalpel blade. Bone marrow was removed by  



www.manaraa.com

53 
 

 
 
Figure 22.  Selection of the regions of interest (red) for measuring Al BDI (right) and 
bone BDI (left) from the tenth and thickest step of the bone wedge, determined from a 
digital radiograph taken at taken at 60 kV, 0.08 seconds and 15 mA. 
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Figure 23. Selection of 10 regions of interest (white lines) along a third metacarpal 
cadaver bone without soft tissue and bone marrow from a dorsal palmar (A) and lateral 
medial radiograph (B). The diameter of the bone was measured at each region of interest 
for both views. Both images contain an Auto-Scaler (left) and Al wedge (right). 

A) B) 
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scraping out the medullary cavity with a metal spoon. For all radiographs, bone OD was 

measured at 10 different regions of interest spaced equally proximal to distal along the 

midline of the third metacarpal (Figure 23). Each region of interest was equal to the 

diameter of the bone in width, and 9 pixels in height. Bone OD was analyzed for 

differences in each region of interest dependent on radiographic view (DP and LM) and 

presence of soft tissue and bone marrow. Additionally, the diameter of the third 

metacarpal bone at each of the regions of interest was measured on both LM and DP 

views to determine bone density. Bone density was determined by dividing OD from one 

view by the diameter measured from the opposite view for each region of interest. 

Radiographs were taken with a focal distance of 26 inches and exposure settings of 65 

kV, 0.06 seconds and 15 mA. 

Error in bone OD due to radiographic positioning was further investigated in a 

single region of interest at the mid-diaphysis of a third metacarpal cadaver limb. The 

region of interest was limited to a known area of cortical bone on the lateral wall in a DP 

view (Figure 24). Bone OD was determined for this region while varying the angle 

between the X-ray source and limb in two rotational planes: one proximal to distal and 

the second lateral to medial. Angles varied from 5 - 32 degrees proximal to distal, and 

from 10 - 30 degrees lateral to medial, with 0 degrees being normal. Radiographs were 

taken 66 kV, 0.06 seconds and 15 mA with a focal distance of 26 inches.  

Levels of precision errors (SD) and coefficients of variation (CV) were assessed 

by measuring bone OD from 40 different LM radiographs by three different users (Glüer 

et al. 1995).   
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Figure 24. Selection of region
(left) positioned at the mid
bone, determined from a dorsal palmar radiograph taken at
mA. The X-ray source was placed at 30 degrees rotation from a standard 
view.  

 

regions of interest (red) for the Al wedge (right) and cortical bone 
at the mid-diaphysis in the lateral cortical region of the third metacarpal 

from a dorsal palmar radiograph taken at 60 kV, 0.06 seconds
ray source was placed at 30 degrees rotation from a standard 
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and cortical bone 
of the third metacarpal 

0 kV, 0.06 seconds and 15 
ray source was placed at 30 degrees rotation from a standard dorsal palmar 
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4.8.  Statistical Analysis 

Regression analyses were performed using the least squares method. Slope of the 

regression lines were shown to be different from zero determined by a Student’s t-test.  

Multi-variable analysis was done for BDI versus exposure intensity and time using an 

ANOVA and associated F-test. All statistical tests were performed using Minitab and 

were based on a 2-sided null hypothesis of no difference and a level of significance set at 

0.05.  

 

4.9. Results 

 While standardizing BDI, bone BDI decreased with increasing exposure intensity 

and exposure time. From 0.02 to 0.14 seconds and 55 to 80 kV, bone BDI ranges from 

13,747 to 49,851 (Table 4A). Similarly, Al BDI decreased with increasing exposure 

intensity and exposure time, ranging from 21,388 to 54,328 (Table 4B). BDI correlated 

linearly with exposure intensity and exposure time for Al (r2 = 0.8594, F(2,39) = 119.2, p 

< 0.001) and bone (r2 = 0.9126, F(2,39) = 203.7, p < 0.001) (Figure 25). For each 

combination of intensity and exposure time, Al BDI showed a linear correlation with 

bone BDI (r2 = 0.9599, F(1,40) = 957.3, p < 0.001). As Al BDI increased per unit, there 

was an increase in bone BDI of 1.12 ± 0.04 (Figure 26).  

 When checking for BDI standardization over a range of exposures, we determined 

the thickness of steps from an Al step-wedge when using a standard curve from the Al 

wedge (Table 5). The radiographic measurement of mm Al was a significant predictor of 

the Al step-wedge thickness (r2 = 0.992, F(1,249) = 31,790, p < 0.001, Figure 27). 

Additionally, there was no significant evidence that mm Al was not equal to the step- 
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Figure 25.  BDI versus exposure intensity (top) and exposure time (bottom) determined 
from a dorsal palmar radiograph of a third metacarpal cadaver bone and Al wedge taken 
at varying exposure (p < 0.001). 
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Figure 26.  Linear correlation of BDI of a third metacarpal cadaver bone versus Al BDI at 
varying exposure intensities (55-80 kV) and exposure times (0.02-.014 s) (p < 0.001).  
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Figure 27. Regression of mm Al measured from a radiograph versus thickness of Al 
determined with calipers for 16 steps of an Al step-wedge. Greater variance is seen at 
steps thicker than 12 mm (p < 0.001). 
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Table 4.  BDI at the nutrient foramen (A) and Al wedge (B) determined from a dorsal 
palmar radiograph of a third metacarpal at varying exposure intensities (55 – 80 kV) and 
exposure times (0.02 – 0.14 seconds).  

A)  Exposure Time (sec) 

  0.02 0.04 0.06 0.08 0.1 0.12 0.14 
In

te
n

si
ty

 (
kV

) 
55 49851.20 47324.93 48851.92 47979.78 45745.73 41531.48 39134.09 
60 45854.03 48001.42 44886.04 40580.10 38567.94 33940.24 30970.81 
65 45657.83 45258.55 46563.14 35112.90 31168.28 27543.62 25046.51 
70 47970.69 39823.54 38583.39 29976.86 25877.64 23134.80 22218.42 
75 43981.89 38335.79 31419.15 25567.06 22194.23 19800.11 18432.86 
80 43221.42 36932.82 27441.96 22277.3 19188.45 16605.65 13747.36 

B)  Exposure Time (sec) 

  0.02 0.04 0.06 0.08 0.1 0.12 0.14 

In
te

n
si

ty
 (

kV
) 

55 54328.01 51278.43 53365.63 52982.59 52035.74 50003.53 49789.47 
60 48724.45 52346.50 51439.42 49420.01 47922.23 44261.64 41638.44 
65 48790.40 51097.91 51579.49 44946.46 41295.99 37956.83 35236.51 
70 51871.32 48464.33 47919.15 39674.84 36117.23 32890.75 32145.65 
75 47540.82 47008.81 41149.23 35358.32 31197.42 28125.15 26515.69 
80 49108.10 46107.06 37058.30 31152.24 26649.52 23781.63 21387.57 
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Table 5. Thickness of Al (mm Al), average thickness of Al with standard deviation 
(Average ± SD), and actual thickness (t) of Al determined for 16 steps of an Al step-
wedge. Thickness in mm Al was measured from digital radiographs taken from 50 to 90 
kV at 0.06 seconds while actual thickness (Actual t) was measured using digital calipers. 
Percent error compared actual thickness of the step to radiographic quantification of 
average mm Al.   

Step 
mm Al at Varying kV 

Actual t (mm) % Error 
50 60 70 80 90 Average ± SD 

1 1.90 1.91 1.99 2.01 2.14 1.99 ± 0.10 1.62 22.9 
2 3.58 3.52 3.59 3.61 3.77 3.61 ± 0.09 3.20 12.9 
3 5.16 5.07 5.15 5.15 5.28 5.16 ± 0.08 4.80 7.6 
4 6.79 6.68 6.73 6.73 6.88 6.76 ± 0.08 6.40 5.6 
5 8.39 8.27 8.28 8.28 8.42 8.33 ± 0.07 7.95 4.7 
6 10.04 9.90 9.87 9.85 9.99 9.93 ± 0.08 9.60 3.4 
7 11.66 11.49 11.43 11.38 11.47 11.48 ± 0.10 11.20 2.5 
8 13.33 13.08 12.99 12.91 13.00 13.06 ± 0.16 12.70 2.8 
9 15.03 14.74 14.58 14.46 14.55 14.67 ± 0.22 14.35 2.2 
10 16.72 16.35 16.12 15.95 16.01 16.23 ± 0.32 15.90 2.1 
11 18.50 18.01 17.69 17.49 17.52 17.84 ± 0.42 17.60 1.4 
12 20.31 19.72 19.32 19.00 19.00 19.47 ±  0.56 19.10 1.9 
13 22.14 21.36 20.85 20.47 20.47 21.06 ± 0.70 20.70 1.7 
14 24.09 23.07 22.39 21.92 21.86 22.67 ± 0.93 22.25 1.9 
15 26.10 24.76 23.98 23.44 23.36 24.33 ± 1.14 23.85 2.0 
16 26.81 25.82 25.24 24.88 25.18 25.59 ± 0.76 25.40 0.7 
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wedge thickness as the regression slope was not significantly different than 1 (t(249) = 

1.373, p = 0.171). At thicker steps of Al (steps 10 – 16) larger variation in mm Al was 

seen. 

To determine OD for cortical bone, the relationship between OD and BDI was 

quantified. Bone BDI was shown to increase linearly with increasing areal bone density 

and therefore bone OD (r2 = 0.9716, F(1,1193) = 40,850, p < 0.001, Figure 28). From 

Row 1 to Row 10 of the bone wedge, the BDI ranged from 3,648 ± 723 to 54,151 ± 691 

(Table 6). Similarly, Al BDI increased with increasing Al areal density and, therefore, Al 

OD, ranging from a BDI of 0 to 53,810 with a constant density of 2.70 g/cm3. Al 

thickness increased linearly along the length of the Al wedge from 0 to 4.26 cm before 

the slope of the standard curve began to decrease resulting in a nonlinear correlation with 

Al OD above 4.26 cm Al thick (Figure 29). For thicknesses under 4.26 cm Al a linear 

approximation could be made, allowing determination of the mass attenuation coefficient 

ratio from a single variant (r2 = 0.9973, F(1,631) = 232,800, p < 0.001, Figure 30). In 

addition, the ratio of the mass attenuation coefficients could be solved for by comparing 

Al OD to that of bone when Al BDI equals bone BDI, utilizing Equation 3. The mass 

attenuation coefficient ratio -�!+, �!/⁄ . was estimated using regression equations from 

Figures 27 and 29.  At the point where BDI was equal for both materials �!+, �!/⁄  was 

determined to be 0.9042 (p < 0.001) (Appendix A). This allowed for determination of 

bone OD in terms of g/cm2. 

When checking for OD standardization, bone OD determined from radiographs of 

the bone wedge was compared to bone areal density determined using a scale and 

calipers. Bone areal density correlated linearly with bone OD determined from  
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Figure 28. Bone BDI determined from a radiograph of the bone step-wedge versus bone 
areal density measured with digital scale and calipers (p < 0.001).  
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Figure 29. Al BDI versus Al areal density for the length of the Al wedge. With areal 
density greater than 4 g/cm2 there is a visible decrease in slope of the standard curve.  
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Figure 30. Al BDI versus Al areal density determined for the linear region (0 – 40,000 
BDI) of the Al wedge standard curve from a radiograph taken at 66 kV, 0.08 seconds and 
15 mA (p < 0.001). 
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Figure 31. Regression of areal bone density versus bone OD determined from 
radiographs of a cortical bone wedge at 40 to 90 kV. 
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Step Bone BDI  ± SD t (cm) D (g/cm3) D*t (g/cm2) 

1 3,648 ± 723 0.271 1.76 0.48 
2 4,591 ± 757 0.400 2.02 0.81 
3 15,962 ± 129 0.754 1.92 1.45 
4 17,187 ± 268 0.929 1.86 1.79 
5 22,964 ± 133 1.047 1.95 2.04 
6 27,536 ± 280 1.325 1.90 2.50 
7 33,969 ± 127 1.601 1.87 3.00 
8 46,201 ± 115 2.140 1.96 4.12 
9 47,870 ± 952 2.498 1.81 4.53 
10 54,151 ± 691 3.004 1.87 5.61 

 
Table 6: BDI and standard deviation (SD), thickness (t), density (D) and areal bone 
density (D*t ) determined for ten steps of the cortical bone step-wedge. BDI was 
measured from a digital radiograph taken at 60 kV, 0.08 seconds and 15 mA. Thickness 
was determined using digital calipers, and density was determined from weight (g) using 
a digital balance divided by volume (cm3) determined using digital calipers. 
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Appendix A 

 

Equation 3: 
 */�/ � -�!+, �!/⁄ . · *+,�+,  

 -�!+, �!/⁄ . � */�/ *+,�+,⁄  

 
Regression equations: 
 

 1#�2�34 � 0.105 · */�/ ) 0.023 

 1#�+, � 0.095 · *+,�+, < 0.108 

 

Solving for �!+, �!/⁄ : 

 0.105 · */�/ ) 0.023 � 0.095 · *+,�+, < 0.108 

 */�/ *+,�+,⁄ � -�!+, �!/⁄ . � 0.904  
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radiographs taken from 40 to 90 kV, resulting in a 0.741 increase in areal density per unit 

increase in bone OD (r2 = 0.9907, F(1,89) = 184.7, p < 0.001, Figure 31). Using the 

regression equation from Figure 31, bone areal density can be determined using the 

predictor variable bone OD accurate greater than 93% for exposure intensities of 50 – 90 

kV (Table 7). 

In measuring OD, errors associated with effects of radiographic positioning were 

evaluated. To assess error in OD due to positioning, bone OD was measured in the 

cortical region of the mid-diaphysis of a third metacarpal cadaver limb. At zero degrees 

lateral to medial rotation, OD was determined to be 5.70 ± 0.02 g/cm2. From 10 - 30 

degrees of rotation in the lateral to medial direction average OD was 5.33 ± 0.24 g/cm2. 

Error in OD was greater than 10% with lateral to medial rotation greater than 18 degrees, 

and less than 3% with rotation under 5 degrees (Table 8). From 5 - 32 degrees of rotation 

in the proximal to distal direction the average OD was 5.17 ± 0.20 g/cm2, measured on a 

slightly different region of cortical bone as part of the third metacarpal was cut off the 

radiograph. Error in OD was less than 10% with proximal to distal rotation under 30 

degrees, and less than 3% with rotation under 5 degrees (Table 9).  

Error in OD associated with effects of bone marrow and soft tissue were also 

analyzed. OD was determined for 10 regions of interest dependent on radiographic view 

(DP and LM) for three conditions: with soft tissue and marrow, after removal of soft 

tissue, and after removal of soft tissue and marrow (Figure 32). Additionally, the 

diameter of the third metacarpal bone at each of the regions of interest was measured on 

both views to determine bone density (g/cm3) (Figure 33, Table 10). The slopes of the  
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Figure 32. Bone OD versus 10 regions of interest (slice #) of known thickness determined 
from a dorsal palmar (A) and lateral medial (B) radiograph of a third metacarpal cadaver 
limb (A) and LM view (B). Bone OD was measured with soft tissue and marrow (blue), 
after the removal of soft tissue (red) and after the removal of soft tissue and marrow 
(green).  
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Figure 33. Bone density versus 10 regions of interest (slice #) of known thickness 
determined from a dorsal palmar (A) and lateral medial (B) radiograph of a third 
metacarpal cadaver limb (A) and LM view (B). Bone density was measured with soft 
tissue and marrow (blue), after the removal of soft tissue (red) and after the removal of 
soft tissue and marrow (green). 
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Step Average Bone OD ± SD D*t (g/cm2) % Error 

2 0.84 ± 0.08 0.808 4.3 
3 1.44 ± 0.08 1.445 0.1 
4 1.65 ± 0.07 1.729 4.3 
5 2.02 ± 0.04 2.040 1.2 
6 2.46 ± 0.02 2.514 2.0 
7 2.89 ± 0.05 2.999 3.6 
8 3.93 ± 0.10 4.189 6.2 
9 4.29 ± 0.12 4.530 5.2 
10 5.73 ± 0.22 5.606 2.2 

 
 
Table 7. Average bone OD and standard deviation (SD) and bone areal density (D*t ) for 
the ten steps of the bone step-wedge, determined from radiographs taken from 50 – 90 
kV. Percent error compared bone areal density for the step to radiographic quantification 
of bone OD. Step 1 is not included as it was too thin to determine bone OD from the 
radiographs.  
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Rotation (°) OD ± SD (g/cm2) % Error 

0.0 5.70 ± 0.02 0.00 
10.0 5.55 ± 0.07 2.66 
15.0 5.29 ± 0.02 7.16 
18.0 5.27 ± 0.07 7.49 
22.0 5.10 ± 0.09 10.60 
29.0 5.08 ± 0.08 10.87 

 
Table 8. OD and standard deviation (SD) of the lateral cortical region of the mid-
diaphysis determined from radiographs of the third metacarpal cadaver limb measured 
with lateral medial rotation. Error was determined as compared to 0 degrees rotation. 
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Rotation (°) OD ± SD (g/cm2) % Error 

0.0 4.98 ± 0.02 0.00 
5.0 5.01 ± 0.05 0.69 
15.0 5.09 ± 0.05 2.25 
20.0 5.27 ± 0.06 5.86 
30.0 5.49 ± 0.03 10.17 

 

Table 9. OD and standard deviation (SD) for the lateral cortical region of a radiograph of 
a third metacarpal cadaver limb measured with dorsal palmar rotation. Percent error was 
determined as compared to 0 degrees rotation.  
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A) 

Slice 

All No Soft Tissue No Soft Tissue or Marrow 

OD 
(g/cm2) 

t (mm) 
D 

(g/cm3) 
OD 

(g/cm2) 
t 

(mm) 
D 

(g/cm3) 
OD 

(g/cm2) 
t 

(mm) 
D 

(g/cm3) 

1 2.33 4.30 0.28 1.69 3.31 0.56 1.63 3.31 0.55 
2 2.56 4.54 0.29 1.89 3.42 0.61 1.84 3.42 0.59 
3 2.70 4.48 0.31 2.10 3.62 0.64 2.03 3.62 0.62 
4 2.75 4.35 0.34 2.25 3.70 0.67 2.20 3.70 0.66 
5 3.02 4.54 0.37 2.37 3.86 0.68 2.39 3.86 0.69 
6 3.23 5.17 0.38 2.53 4.00 0.70 2.60 4.00 0.72 
7 3.47 5.25 0.40 2.76 4.28 0.71 2.80 4.28 0.72 
8 3.88 5.86 0.45 3.00 4.56 0.73 3.11 4.56 0.75 
9 4.30 7.31 0.49 3.16 4.87 0.72 3.31 4.87 0.75 
10 4.56 7.10 0.60 3.47 5.39 0.71 3.64 5.39 0.75 

 

B) 

Slice 

All No Soft Tissue No Soft Tissue or Marrow 

OD 
(g/cm2) 

t 
(mm) 

D 
(g/cm3) 

OD 
(g/cm2) 

t 
(mm) 

D 
(g/cm3) 

OD 
(g/cm2) 

t 
(mm) 

D 
(g/cm3) 

1 2.36 9.46 0.60 2.30 4.15 0.61 2.25 4.15 0.60 
2 2.37 8.91 0.62 2.49 4.08 0.67 2.46 4.08 0.67 
3 2.48 8.83 0.67 2.55 4.00 0.71 2.47 4.00 0.68 
4 2.57 8.32 0.70 2.70 4.04 0.74 2.54 4.04 0.70 
5 2.70 8.07 0.74 2.84 4.05 0.77 2.54 4.05 0.69 
6 2.52 7.39 0.69 2.66 3.95 0.75 2.54 3.95 0.71 
7 2.67 7.43 0.73 2.64 4.00 0.73 2.53 4.00 0.70 
8 2.64 6.44 0.73 2.66 3.92 0.75 2.50 3.92 0.70 
9 2.39 5.35 0.65 2.51 3.96 0.70 2.42 3.96 0.67 
10 2.61 4.79 0.71 2.58 4.09 0.70 2.49 4.09 0.67 

 

Table 10. OD and diameter thickness (t) for 10 regions of interest (slice) determined from 
a radiograph of a third metacarpal cadaver limb with soft tissue and marrow (All), 
without soft tissue, and without soft tissue and marrow. Density (D) for each slice was 
determined by dividing OD by thickness. For each case, OD was measured from the 
lateral medial view while thickness was measured from the dorsal palmar view (A) or OD 
was measured from the dorsal palmar view while thickness was measured from the lateral 
medial view (B).  
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regression lines for OD and bone density associated with no soft tissue and no marrow 

were not significantly different from each other in both the LM and DP views (p > 0.05).  

The slopes of the regression lines for OD associated with soft tissue were significantly 

different from the other conditions of no soft tissue and no soft tissue and marrow, but 

only in the DP view (p < 0.001, Table 11). The slopes of the regression lines for bone 

density associated with soft tissue were significantly different from the other conditions 

of no soft tissue and no soft tissue and marrow, but only in the LM view (p < 0.001, 

Table 11).  

Error in OD associated with user error was determined for three different users 

that evaluated 40 radiographs of third metacarpal bone over a two week interval. 

Determination of OD varied by user and ranged from CV 1.51 – 4.01 % and SD 0.05 - 

0.13 (Table 12).  
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Sample 
OD ± SD (g/cm2) Density ± SD (g/cm3) 

LM DP LM DP 

All 2.53 ± 0.13* 3.28 ± 0.76 0.39 ± 0.10 0.68 ± 0.05† 
No Soft Tissue 2.59 ± 0.15* 2.52 ± 0.57* 0.67 ± 0.05† 0.71 ± 0.05† 
No Soft Tissue/Marrow 2.47 ± 0.09* 2.55 ± 0.66* 0.68 ± 0.07† 0.68 ± 0.03† 
*,†  no significant difference between values (P > 0.05) 
 
Table 11.  Average OD and bone density and standard deviation (SD) from lateral medial 
and dorsal palmar radiographs of a third metacarpal cadaver limb with soft tissue and 
marrow (All), without soft tissue (No Soft Tissue) and without soft tissue and bone 
marrow (No Soft Tissue/Marrow). 
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User df SD CV (%) 

1 40 0.10 3.28 
2 40 0.13 4.01 
3 40 0.05 1.51 
All 280 0.11 3.46 

 
Table 12. Levels of precision errors (SD) and coefficients of variation (CV) for OD 
determined from three different users and all users together. Error in OD was determined 
for three different users that evaluated 40 radiographs over a two week interval. 
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V.  DISCUSSION 

Digital radiographic standardization allows quantitative evaluation of bone 

structure and quality. Objective measurements from radiographs may improve treatment 

of equine limb lameness by providing the veterinarian with multiple quantitative 

radiographic assessments of the equine skeleton (Rocha et al. 2004, Kummer et al. 2004, 

Hunt 2002, Parks and O’Grady 2003).  In the first study, a novel morphometric 

measurement was generated via simple radiographic calibration to evaluate the volume of 

the solar aspect of the distal phalanx in the horse. While form and function of the distal 

phalanx has been described, to our knowledge the PM is the only quantitative, 

radiographic assessment of the solar, concave aspect of the distal phalanx (Parks and 

O’Grady 2003, Smallwood and Holladay 1987). The PM is a significant predictor of 

solar cup volume (t(63) = 26.64, p < 0.001, Figure 11), better than common 

morphometric measurements of lateral toe length (r2 = 0.684, t(63) = 11.483, p < 0.001) 

and lateral height of the distal phalanx (r2 = 0.668, t(63) = 11.07, p < 0.001) (Figure 12). 

As the PM is a unit-less while solar cup volume is not, we are assuming in this study that 

the 65 cadaver bones are of similar size and that changes in solar cup volume are due to a 

decrease in the PM, not simply a smaller third phalanx bone. The PM is independent of 

radiographic exposure and positioning, but may be dependent on radiographic positioning 

greater than an 11 degree rotational displacement (p > 0.05, Table 2). Further, error in 

determining the PM is significantly affected by experience of the user, as seen in User 4 

in Table 3, as the measurement is dependent on the user tracing a radio-dense curve, a 

highly subjective assessment.  
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 Because the PM is a ratio, it is not dependent on size of the distal phalanx and 

can be assessed independent of breed related differences in foot size. The PM ranged 

from 1.24 – 16.74% and was shown to be negatively correlated with age (Figures 13, 14). 

Therefore, young horses have a significantly greater PM than older horses in this study.  

Additionally, the PM for left and right front feet were not significantly different at any 

age class in our study (t(217) = -0.676, p = 0.75, Figure 13). Measurement of the PM may 

afford the veterinarian a quantitative technique to assess the presence of significant 

unilateral foot pathology that would result in differences between the left and right PM 

for an individual horse. As the age-related, gradual demineralization of bones is a well 

studied phenomenon, especially in osteoporosis in humans, we believe that in horses the 

decreased depth of the solar concavity over time is due to gradual demineralization of the 

third phalanx along the solar margin. Because the distal phalanx is so variable in 

morphology, especially along the solar margin, it is not an ideal model for radiographic 

determination of osteoporotic changes.  

In the second study, the more complex variable of bone density was standardized 

using digital radiographs. Bone density measurement to assess bone strength is a 

commonly accepted concept in human medicine but not normally used in veterinary 

medicine, mostly due to the impractical use and expense of large machinery for the 

traveling professional (Tabensky et al. 1996, Leichter et al. 1982). Veterinary clinicians 

routinely utilize radiographs to assess bone health and diagnose abnormalities such as 

fractures and osteoarthritis, subjectively and qualitatively assessing the opacity or optical 

density of areas of interest. A tool to quantitatively evaluate bone strength or density in 

regions of interest from radiographic images would be invaluable. Therefore, we 



www.manaraa.com

82 
 

developed a method based on standardized digital radiographs that affords the veterinary 

professional accurate and repeatable measurement of areal bone density. 

As the third metacarpal in the mid-diaphysis region is composed of uniformly 

dense cortical bone and very trabecular bone and soft tissue, it is an ideal choice to 

investigate the parameters associated with radiographic determination of bone density. In 

this study, we showed that the attenuation of X-rays through bone and Al occurs in a 

smooth, linear fashion in response to exposure settings and properties of the material 

itself (Figure 25, 26, Table 4). Over the range of clinically relevant exposures, the BDI of 

an object of known density and thickness such as an Al wedge is a significant predictor of 

bone BDI of unknown density and thickness (r2 = 0.9599, F(1,40) = 957.3, p < 0.001, 

Figure 26). BDI is determined using a standard curve from an Al wedge, where BDI is a 

function of thickness or mm Al. For regions of interest thicker than ~12 mm Al, there is 

greater variability from the actual thickness of the region of interest (Figure 27). This is 

due the non-linear portion of the Al wedge standard curve; as the slope decreases with 

thickness of Al, there is a less distinguishable difference in BDI (Figure 29). In checking 

the accuracy of mm Al determination using the standard curve, mm Al from the standard 

curve was a significant predictor of the Al step-wedge thickness, measured using digital 

calipers (r2 = 0.992, F(1,249) = 31,790, p < 0.001, Figure 27). Additionally, there was no 

significant evidence that mm Al was not equal to the actual thickness of the Al step-

wedge as the regression slope was not significantly different from 1 (t(249) = 1.373, p = 

0.171). These results indicate that calibration of BDI with an Al wedge standard curve 

allows for accurate assessment of the thickness of bone or Al in units of mm Al for 

medically relevant ranges of exposure. 
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In determining bone OD, a bone step-wedge of known density and thickness was 

created (Table 6). BDI was shown to be a significant predictor of areal density in both Al 

(r2 = 0.9973, F(1,631) = 232,800, p < 0.001, Figure 30) and bone (r2 = 0.9716, F(1,1193) 

= 40,850, p < 0.001, Figure 28). Further, our goal was to determine bone OD in terms of 

g/cm2 with known values for the mass attenuation coefficient ratio, density and thickness 

of Al. The ratio of the mass attenuation coefficients was solved for by comparing Al OD 

to that of bone when Al BDI equals bone BDI, utilizing Equation 3. The mass attenuation 

coefficient ratio -�!+, �!/⁄ . was estimated using regression equations from Figures 27 

and 29.  At the point where BDI was equal for both materials, �!+, �!/⁄  was determined 

to be 0.9042 (p < 0.001) (Appendix A). Our experimental value for the mass attenuation 

coefficient ratio was is 2.41% different from the published value of 0.8825 cm2/g at 60 

kV. Between the medically relevant energies of the incident X-rays (40 - 100 kV), the 

mass attenuation coefficient ratio of Al and cortical bone is relatively constant at 0.886 ± 

0.026 (Figure 20) (Hubbell and Seltzer 2004). Further evaluation of the bone step-wedge 

was performed to test if bone OD was an accurate predictor of bone areal density for any 

exposure. We hypothesized that filters associated with the digital sensor software 

(Canon) where applied differently depending on exposure. Although the filtering is 

inherent in the digital image uptake, it was turned off as much as possible. Further, there 

may be error in bone OD associated with the non-linear portion of the Al wedge standard 

curve. Subsequently, correction was necessary to ensure that bone OD was an accurate 

predictor of bone areal density from 50 to 90 kV. The relationship of bone areal density 

versus bone OD was characterized from radiographs of the bone step-wedge using linear 

regression (r2 = 0.9907, F(1,89) = 184.7, p < 0.001, Figure 31). After correcting bone OD 
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using the regression equation, bone areal density could be determined from a radiograph 

with less than a 7 % error (Table 7). This method permits accurate evaluation of BDI and, 

therefore, bone OD independent of the exposure setting.  

We performed this study using the third metacarpal equine bone, eliminating 

confounding factors due to marrow and soft tissue. In vivo, soft tissue and marrow would 

be expected to have substantial effects on density measurements due to X-ray beam 

attenuation, magnification and photon absorption, making it difficult to determine both 

bone thickness and the OD or density of cortical bone alone. However, the contribution 

of density, mass attenuation, and thickness from marrow and soft tissue on OD are known 

to be significantly less than that of cortical bone. Comparing the effect of density and 

mass attenuation on BDI reveals the contribution of soft tissue to be relatively minimal, 

as the density of soft tissue is 0.55 g/cm3 compared to 1.92 g/cm3 in cortical bone and the 

mass attenuation coefficient of soft tissue is 0.2048 cm3/g compared to 0.3148 cm3/g in 

cortical bone measured at 60 kV (Berger et al. 2000, Hubbell and Seltzer 2004). 

Therefore, we expected cortical bone to have the largest effect on OD and density 

measurement. OD was determined for 10 regions of interest proximal to distal along the 

mid-diaphysis of the third metacarpal view of the distal limb dependent on radiographic 

view (DP and LM) and presence of soft tissue and marrow (Figure 32). Bone OD 

determined from the third metacarpal cadaver limb after only soft tissue was removed 

was not significantly different from bone OD after soft tissue and bone marrow were 

removed in both the LM and DP views (p > 0.05, Figure 32). The slopes of the regression 

lines for bone OD associated with soft tissue was significantly different from no soft 

tissue and no soft tissue or marrow, but only in the LM view (p < 0.001, Figure 32, Table 
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11). We observed that the presence of both soft tissue and bone marrow significantly 

affected the measurement of OD when measuring from the DP view. OD measured from 

the DP view of an intact limb was significantly greater than for the LM view or for any 

other condition. This is explained by our method of determining OD as an average value 

for a given region of interest, meaning OD was much greater when the soft tissue was 

compacted into a smaller region of interest in the DP view. From the LM view, the region 

of interest encompassed the bone only, and therefore much less soft tissue. From our 

results, there were no statistically significant effects of soft tissue on OD measurements 

from the LM view of an intact third metacarpal limb. 

Additionally, we hypothesized that true bone density could be determined 

providing an Al wedge was included in the radiograph and the thickness of bone was 

known. From the previous study, thickness of the third metacarpal was determined from 

both the DP and LM view (Table 10). Bone density determined after soft tissue was 

removed was not significantly different than bone density determined after soft tissue and 

marrow were removed in both the LM and DP views (p > 0.05, Figure 33). The slopes of 

the regression lines for bone density associated with soft tissue was significantly different 

from the other conditions, but only in the LM view (p < 0.001, Figure 33, Table 11). The 

average density determined from radiographs for all regions of interest along the third 

metacarpal was determined to be 0.686 ± 0.052 g/cm3. Our experimental value for bone 

density was closer to the published value for the density of soft tissue of 0.55 g/cm3 

compared to 1.92 g/cm3 for cortical bone (Berger et al. 2000). Presently, bone density 

may not be reliably determined with this method due to effects from assorted variables. 

Error in our measurement of bone density may be due to effects of soft tissue when 
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determining OD. Also, use of the third metacarpal diameter for the thickness value of 

cortical bone may be decreasing our value for bone density, as it is an overestimate of 

cortical bone thickness by including the thickness of soft tissue. Further, filtering 

techniques performed by the Canon software apply various complex and non-linear 

imaging processing algorithms to the image, which may be applied to a single pixel 

individually, to a pixel depending on neighboring pixels, or even to a pixel depending on 

non-localized effects from a different region of the image. Overall, determination of bone 

density from standardized radiographs is a complex task due to effects of soft tissue and 

the difficulty in determining cortical bone thickness. 

Effects on OD determination due to radiographic positioning were also evaluated. 

We observed less than a 10% error in OD as long as the user did not exceed 18 degrees of 

lateral to medial rotation and 30 degrees of proximal to distal rotation (Table 8, 9). Error 

in OD measurement due to user error was also determined to be low, with a maximum 

CV of 4.01% (Table 12). Although error in the 5% range is not acceptable for accurate 

medical diagnosis of decreased bone mineralization in humans, this method allows 

quantitative comparison of OD from any digital radiograph standardized in this manner. 

This method successfully quantified bone OD via measurement of BDI from 

standardized digital radiographs, allowing for the opacity of radiographs to be truly 

comparable when taken under different circumstances. This may be useful in evaluation 

for diseases that weaken bone in certain areas more than others, such as osteoarthritis, or 

diseases that need to be monitored over time. This may have practical applications in 

clinical circumstances as OD is dependent only on thickness and density of the material; 

therefore, a given area of bone with lower OD than another area of bone of similar 
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thickness can be concluded to have a lower density. It has been suggested that bone 

fractures in racehorses are due to areas of weakened bone or fatigue fractures that occur 

during training (Nunamaker et al. 1990, Warden et al. 2005), and may be evaluated as 

areas of decreased OD. Further, stress fractures induced by exercise are correlated with 

decreased BMD (Vinther et al. 2005), and OD may be an accurate predictor of BMD. In 

young racehorses, the amount of bone remodeling during training could be investigated 

by comparison of OD for different areas of the remodeling third metacarpal bone in hope 

of preventing stress fractures, and ultimately, catastrophic fractures.  
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